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I. Introduction. Let a viscous incompressible liquid fill the space outside an infi- 
nite cylinder of radius ~. We will consider the rotationally symmetric motion of the liquid 
produced by rotation of the cylinder about its own axis at an angular velocity ~. We intro- 
duce a cylindrical coordinate system with z axis coinciding with the cylinder axis. It is 
known that in such coordinates the Navier--Stokes equation admits a solution of the form u = 
f(r), v = g(r), w = --zh(r), p = Kgz2/2 + ~I(r), where u, v, w are the velocity components, p 
is pressure, p is liquid density, K is some constant, and the functions f, g, h, ~ are de- 
fined by the equations 

v(i ' "  - -  2 f lg r  -- f l ! r  2 + f i r  ;~) - -  11" -{- [ ' ~ + f [ ' / r  + 212/r " : K; 

v(g" + g ' / r - -g / r  2) - -  ](g' + g/r) = O; 

h - - [ ' - - / ~ r =  O; 

~'  - -  vf f"  -i- t i l t  - -  l / r  e) "+- H" - -  g ' / r  = O. 

The condition of adhesion to the cylinder requires that 

f(a) : O, g(a) = oa.  h(a) = O. 

Equations ( 1 . 3 ) ,  (1.5) determine boundary conditions for Eq. 

f(a)  = l ' ( a )  = O. 

(].1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

( ] . 1 )  i n  t h e  fo rm 

(I  . 6 )  

If the solution of Eqs. (I.1), (1.6) is known, then the functions ~, g, h can be found from 
Eqs. (1.2)-(1.4) with the aid of quadratures. We note that Eq. (1.2) has a solution g = ~2/ 
r, which at K = 0 and f = 0 corresponds to velocity and pressure fields Consistent with the 
adhesion conditions 

u = O, v = o a f ~ r ,  w = O, p = - - p o a * / 2 r  2 + eonst.  ( 1 . 7 )  

The present study will prove the existence of solutions of the problem of Eqs. (I.])-(1.6) 
differing from Eq. (].7), and will clarify the behavior of such solutions as ~ + 0. 

2. Evaluation of Conditions at Infinity. Since we deal with an infinite region, to 
define the solutions of Eqs. (].])-(1.6), it is necessary to formulate conditions at infinity. 

In Eq. (I.]) we take K = 0 and require that 

f r - ~ O  as r - ~ c o .  

Then the boundary-problem equations (].I), (1.6), (2.1) has a unique solution f - 0. 
prove this fact. If we make the replacement u = rf(r), then from Eqs. (1.1), (].6), 
obtain the following boundary problem: 

v ( u ' "  - "  u ' / r  2 - -  u " / r )  - -  u u " / r  + u ' % r  '-- u u ' / r  2 = O, 

u (a )  = u ' ( a )  = O, u - ~  O, r - ~  0o.  

We note that (v(u" -- u'/r) -- uu'/r)' = --2u'2/r<-~ 0, whence we obtain the inequality 

For u"(a)~ 0, we obtain from Eq. 
whence follows the required u s 0. 
there exists an ro > ~ such that u 
second case, for r ~ ro we have 

PP. 

( 2 . 1 )  

We will 
(2.1) we 

"v (g"  - -  u ' / r )  - -  u u ' / r  ~ v u " ( a ) .  ( 2 . 2 )  

( 2 . 2 )  w i t h  c o n s i d e r a t i o n  o f  u '  ( a )  = 0 t h a t  u '  ( r ) ~  O, 
For u"(a) > 0 either u'(r) 90 for any r~ a, or else 

'(ro) = 0, u"(ro) < 0 and u'(r) ~ 0 for a~ r~ ro. In the 

~ ( ~ "  -- t t ' / r )  -- u u ' / r  <~ O. (2.3) 
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Integration of Eq. (2.3) with consideration of u'(ro) = 0 gives u'(r) ~ 0 for r~ ro. On the 
other hand, u + 0 as r § ~, so that u' § 0 as r § ~ and u~ 0 for r ~ro. From inequality 
(2.3) it follows that wn"~ uu' + wu'/r ~ 0 on the interval (to, ~), which implies that 
u'(r) E 0 on the same interval in view of the boundary conditions for u'(r). This contra- 
dicts our choice of the point ro, whence we conclude that the sign of u'(r) is defined over 
the entire interval (a, ~) so that u s 0, and the case u"(a) > 0 is not realizable. 

In Eq. (I.1) let K > 0. Then the problem of Eqs. (I.1), (1.6), (2.1) has no solution. 
In fact, in this case inequality (2.2) remains in force. Therefore, this problem can have no 
solution other than the trivial f ~ 0. But f ~ 0 is not a solution at K~=0. 

For the case K < 0 we will show the existence of solutions of Eqs. (1.I), (1.6), satis- 
fying the condition 

] ' - ~ - - c  at r - + o %  ( 2 . 4 )  

where c = r 

3. Existence Theorem. The proof of existence of a solution of boundary problem (I.I), 
(1.6), (2.4) rests on a lemma concerning solutions of ordinary differential equations [I]. 

We will give the definition necessary for formulation of the lemma. 

Definition I. Let y, G be n-dimensional vectors with the function G(t, y) continuous 
in the open set ~ of an Eu_clidean space of dimensionality n + I. Let ~o be an open subset of 
~. We denote by 3~o and no, respectively, the boundary and closing of the set. Then (to, 
Yo) ~ a~0and ~--, is termed the exit (or entry) point for the set ~o in relation to the system 

dg/dt = G(t, g), (3. l) 

if for each solution y(t) of this system satisfying the condition y(to) = yo, there exists a 
> 0 such that (t, y(t)) ~ ~o for to - ~ < t < to(to < t < to + ~). If, in addition (t, 

y(t))~ ~o at to < t < to + ~(to -- 6 < t < to), then the point (to, yo) is termed a strict 
exit (entry) point. 

LEMMA l. Under the conditions of Definition I, let the function G(t, y) be such that 
the Cauchy problem for system (3.1) has a unique solution, while the set ~o is such that all 
exit points are strict exit points and the set ~e of exit points is not bound. We denote by 
~i the set of entry points for ~o, and S is an affine subset within ~0~e~, such that 
!~0U~i) contains two points (t~, y~) and (t2, y=) for which the solutions of system (3.1) $ 
passing through (tj, yj) at j = I, 2 exit ~o with growth in t at points belonging to different 

affine components of the set ~o. Then there can be found at least one point (to, yo)~S 

(~0U~i) , such that the solution yo(t) of system (3.1) passing through (to, yo), remains in 
~e at its right-hand maximum interval of existence. 

We will now turn to proof of the solubility of the problem formulated. 
ment of variables 

# 

t = r, Yl =--f, Y~ = Yl + r-lYl, 

we reduce Eq. (I.I) to a system of first-order equations 

dgl /d t  = y ~ - - g l / t ,  dye~dr = Ya, dga/dt = - - y j t +  y~ 

The boundary conditions have the form 

t 

Y3 = Y~ 

- -  YlYa - -  4 c  2. 

With the replace- 

(3 .2 )  

(3 .3)  

We then take 
yl(a) = g2(a) = 0, g2-+ 2c as t - + c r  

Qo = {(t, y): t  > a, Yl arbitrary, 
6 1 =  {(t, y)  : t > a, gl arbitrary, 

~2 ~ =  {(t, y ) : t > a ,  y~ 

f la__ {(t, y )  : t > a ,  Y l  " 

f l ~ =  {(t, y ) : t > a ,  y~ ,, 

0 < yo~ < 2c, ga > 0} ,  

O < y~ < 2c, Ys = O}, 

g~ = 2c, y a >  0 } ,  

Y2 = 2c, y~ = 0},: 
y ~ = O ,  y ~ > O } .  

The set no is open, and the entry points into ~o form a set ~i- To apply the lemma formu- 
lated above, we make use of the fact that system (3.3) has a solution Yl = cr + ar -I, Y2 = 
2c, y~ = 0, where a is arbitrary. This solution corresponds to points from ~3, and therefore 
they are neither entry not exit points. The set of exit points from go coincides with ~I0~2 , 
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since in ~i y3 < 0, and in ~2 ya = y3 > 0. 

The set Q~ = ~I U~ proves to be nonaffine. We denote by S the affine subset ~0U~i, de- 

fined as S = {t = g, (0, 0, y) = y}, where y > 0. 

Let yy(t) be a solution of system (3.3) passing through the point (t, y) = (a, 0, 0, y). 
t 

From the third equation of system (3.3) it follows that ya(a) < --4c 2, so that y3(t) < --2c 2 

for a~t~a @ 6, 5>0. Choosing y < min (2ca~, 2c/5), we obtain ys(a + ~)~.~y -- 2c2~ < 0, 

while ya(t) < 7(t -- a) < y$ < 2c, since y~ = y3 < Y, and this means that at some ~ t 1 

a + $) the curve (t, yy(t)) exits ~o at a point from ~ 

The third equation of Eq. (3.3) can be written as 

v (ty3)'  = ( - -  tylg2) '  @ 2tg~ - -  4c~t. ( 3 . 4 )  

Since 2ty~ 0, by estimating a lower limit for the right side of Eq. (3.4) and integrating 

along the curve (t, yT(t)), we obtain vty3 ~vay + 2c2a 2 -- 2t2c a -- ty~yao Fixing t = T and 

choosing y sufficiently large, it can be shown that y3~ay/2 > 0 on the interval a~t~T 
and ya(T)~ ayT/2 > 2c. Thus the curve (t, yy(t)) exits from ~o at a point where y2 = 2c. 

From Lemma I we find y = 7o > 0 such that the solution yyo(t) remains in ~o at its 

right-hand maximum interval of existence. Since 0~y~2c, this interval coincides with the 

half-line t ~a. We will show that Y2 + 2c as t § ~. 

Since ya > 0 at t > a, it then follows that y~ > 0 at t > a (first equation of Eq. (3.3)), 

then Y3 > 0 and ya < 2c give y~ < 0. Therefore, there exists a limit y3(t) as t § ~, which is 

equal to zero because of the finiteness of ya. This means that Y2 + 2c as t § ~ (in the con- 
! 

trary case Y3 < --const < 0). The existence of a solution to the problem has been proven. 

4. Analysis of Solution Asymptotes. In the new variables T, x = (x~, xa, x3), such 

that 

t = + = = ( 4 . 1 )  

t h e  p r o b l e m  o f  Eqs .  ( 1 . 1 ) ,  ( 1 . 6 ) ,  ( 2 . 4 )  has  t h e  fo rm 

dx~/dT = x 2 - - ~ x / ( t  @ ~ ) ,  dx2/d~ = zs ,  ( 4 . 2 )  

dx3/dT = --cx3/(1 + sT) -- xlx3 + x~ -- 4, x1(0) = x~(0) = 0; x2 § 2, ~ § ~, where s = R -~/ 

R = a=c/m is a parameter playing the role of the Reynolds number. 

We will show that for s ~1 it is true that 

I < C~ ~ x~(O) ~-~ C~. (4.3) 

In view of the choice of the set no made in proving the existence theorem and the transforma- 

tion formulas (4.1) we have the inequalities 

0 < x ~ < 2 ,  x ~ 0 ,  x ~ > 0 .  (4.4) 

t 

I n  v i e w  o f  Eq. ( 4 . 4 ) ,  t h e  t h i r d  e q u a t i o n  o f  Eq. ( 4 . 2 )  g i v e s  xa < O, whence  xa ~ x ~ ( 0 )  = Yo. 
Then  t h e  s e c o n d  e q u a t i o n  of  Eq. ( 4 . 2 )  p e r m i t s  us t o  o b t a i n  x~ < Yo a t  0 ~ x  < 1. T h e r e f o r e ,  

! 
a t  t h e  same �9 xa < Y~ -- 4,  and c o n s e q u e n t l y ,  xa < Yo + Y~ --  4.  S i n c e  x~ > 0, t h e n  Yo + y~ -- 
4 > 0. From this inequality it follows that u ~ C~ > I. 

From the first equation of Eq. (4.2) with the use of inequalities (4.4) we can obtain a 

lower limit for x~(1): x~(1)~--8 -- 2g + yo/(l + g). Inasmuch as Xs(T) > Xs(1) at 0 ~ T < I, 
! 

we find that x~(r) > --8 -- 2~ + io/(l + s), since xa = xa. From Eq. (4.4) x= < 2, hence --8 -- 

2g + yo/(l + g) < 2, so that Yo < (I0 + 2e)(l + ~) ~ 24 at s ~1. Inequalities (4.3) are thus 

proven. 

It is now sufficient simply to prove that at T, greater than ~o, x= > I. In view of the 

fact that xa > 0, the inequalities x9 < x~ -- 4 and xa < Yo + (x~ -- 4)r are true. Considering 

Eq. (4.3), we obtain x~ < C~ + (x~ -- 4)~, so that C~ + (x~ -- 4)T > 0. Choosing ~o = C~/3 and 

considering that x~(~) > x=(xo) at T > ~o, we arrive at the required inequality 

x ~ > l  at Z ~ o  = C~/3. ( 4 . 5 )  

With consideration of inequalities (4.4) the third equation of Eq. (4.2) gives dxa/d~ + 

x ~ x a ~ 0 ,  i . e . ,  x ~ ( ~ ) ~ 7 o  exp - -  x~(s) ds �9 I n t e g r a t i n g  t h e  l a s t  e q u a t i o n  o f  Eq. ( 4 . 2 )  w i t h  
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consideration of Eq. (4.5), we obtain the inequality XI(T) > ~/2 at T ~ To, so that 

xs(~)~Csexp(--C4x 2) at x ~ T  o . (4 .6 )  

I n t e g r a t i n g  the  second e q u a t i o n  o f  Eq. (4 .2)  w i t h  c o n s i d e r a t i o n  o f  Eq. (4 .6 )  and the  boundary  
condition at infinity, we obtain 

0 ~-~ 2 - -  x2 ~ Cbexp (--C6~). (4 .7 )  

Restoring the old variables in Eq. (4.1), instead of inequalities (4.7), we obtain the in- 
equality 04 2c -- y2~ C5c exp (--C~(t -- a)2/s2), which is valid for t~a(l + ~o//R). 

By Eq. (3.2), Y2 = --f' -- f/r, so that 

0 ~ 2c + I'  + / / r  ~ C~c exp (--C~(r - -  a)~/e'). (4 .8 )  

The l a t t e r  i n e q u a l i t y  d e t e r m i n e s  the  b e h a v i o r  o f  t he  f u n c t i o n  h ( r )  = f '  + f / r  as  r § ~ v + 0. 
I n t e g r a t i n g  Eq. (4 .8 )  w i t h  c o n s i d e r a t i o n  o f  f ( a )  = 0 g i v e s  

0 ~ ] + cr - -  ca2/r ~ CTe at r ~ a(1 + eT0). (4 .9)  

I t  now remains  f o r  us to  d e s c r i b e  the  b e h a v i o r  o f  the  f u n c t i o n  g ( r ) ,  which  i n  view o f  Eqs. 
( 1 . 2 ) ,  (1 .5 )  i s  d e f i n e d  amb iguous ly .  However, t he  s o l u t i o n  o f  the  problem o f  Eqs.  ( 1 . 2 ) ,  
(1 .5 )  w i t h i n  the  c l a s s  o f  f u n c t i o n s  f a l l i n g  o f f  a t  i n f i n i t y  more r a p i d l y  than  c o n s t / r  i s  
u n i q u e ,  and has the  form 

~ ( i )  g (r) -- -7- J p exp - -  ds d p exp - -  ds dp, 

whence,  w i t h  Eq. ( 4 . 9 ) ,  we o b t a i n  Ig] ~ Csexp ( - -C ,  r~/~) a t  r ~ a(t + T0/VB). 

Thus,  as R § ~ t he  r o t a t i o n a l  component o f  t he  v e l o c i t y  i s  l o c a l i z e d  i n  a boundary  l a y e r  
w i t h  t h i c k n e s s  o f  the  o r d e r  o f  magn i tude  o f  l / v ~ .  

5. A s y m p t o t i c  Expans ion  in  a Small P a r a m e t e r .  We w i l l  d e f i n e  an a s y m p t o t i c  r e p r e s e n t a -  
t i o n  of  t he  s o l u t i o n  o f  Eqs.  ( l . 1 ) ,  ( 1 . 6 ) ,  (2 .4 )  by the  method o f  merg ing  i n n e r  and o u t e r  
e x p a n s i o n s .  Le t  

](r) = ca(I)(y), y = r/a, e = R-~/e. (5 .1 )  

Then Eq. ( l . 1 )  may be r e w r i t t e n  i n  the  form 

e2(O ''' -t- 2 O " l y  - -  (l)'/y 2 + (l)/y ~) - -  r + ~ '~  + ~ @ ' / y  + 2cl)2/y ~ - -  4 = 0. (5 .2 )  

Having d e f i n e d  the  i n n e r  v a r i a b l e  ~F(T) = ~ ( y ) ,  y = I + eT, from Eq. (5 .2 )  we o b t a i n  the  
e q u a t i o n  

F"  + 2ef"/(l + e~) -- e~'f'/(t + e~) ~ + g3f/(l + e~) a ~ FF" + f '~ 

4- eFF ' / ( I  + ez) + 2e2F2/(I + eT) ~ -- 4 = 0. 
We use  an a s y m p t o t i c  r e p r e s e n t a t i o n  

At n = 0 Co(Y), Fo(T) a r e  d e t e r m i n e d  as s o l u t i o n s  o f  the  p rob lems  
t t t  

Fo - -  Fo o + - -  4 = 0, Vo (0) = (0) = 0, ( 5 . 3 )  

(condition for merger of inner and outer expansions); 

(PoaPo + a)'o ~ + ~DoaPo/y + 2~Do/y --  4 0, (5 4) 

% 0 ) = 0 ,  v- oo. 

We note that the last problem of Eq. (5.4) has a solution Co(y) = ~y + I/y, so that Eq. (5.3) 
with the condition F~(T) § as �9 + oo has a unique solution [l]. According to Eq. (5.1), 
we have fo(r) = C~o(y) = --cr + ca2/r. Then inequality (4.9) shows that If(r)--f0(r)l~C=e at 

<~t, r~a(t  +e'%) 
In conclusion, we note that although the solution presented here does not describe the 

real liquid flow, it can be useful in studying liquid flows produced by rotation of a cylinder 
of finite, but large (in comparison to the radius) length ~. We will offer the hypothesis 
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that the solution studied here is the major term of the "inner expansion" of the exact solu- 
tion near the cylinder as v § 0 and large Z/a, at least far from the cylinder faces. 

The author expresses his gratitude to V. V. Pukhnachev, under whose guidance this study 
was carried out. 
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DETERMINATION OF THE BOUNDARY OF A HYDRODYNAMIC 

CONTACT REGION 

M. A. Galakhov and V. P. Kovalev UDC 5 3 2 . 5 1 6  

The thickness of a lubricating film and the integral hydrodynamic contact force charac- 
teristics are determined to a significant degree by the form and dimensions of the contact 
region [1-5]. The present study will formulate conditions on the boundary of a planar con- 
tact region with consideration of surface tension; the problem of boundary determination 
is formulated within the framework of Reynolds equations. 

I. Boundary Conditions for Reynolds Equations. We will consider the flow of a thin 
liquid layer, separating two surfaces $I and S= (Fig. I). We denote by ~ the region within 
which the liquid occupies the entire interval between the surfaces. Since the layer is thin, 
in correspondence to ~ we will consider a surface S, lying within ~ at equal distances from 
S~ and $2. We denote by 7~ S the boundary of the continuous liquid layer. We will consider 
the nonstationary problem. Let ~, Si, $2, S, y depend on time. Each point of M~y can be 
described by a moving Cartesian coordinate system M~% with unit vectors n, T, k such that 
the vector k is perpendicular to S, z is tangent to y, and n is tangent to S and perpendicular 
to y, directed outward from ~. Let u~ and u2 be the projections of the velocities of the sur- 
faces S~ and $2 on S. We will term the boundary an input (y+), if (n, u~)~ 0, (n, u2)~ 0, 
(n, ul) 2 + (n, u2)2~= 0, an output (y_), if (n, ul)~ 0, (n, ~=)~ O, (n, ul) a + (n, ua)~=/=0, 
or mixed (y• if the conditions for y+ and y_ are not fulfilled. In normal applications 
boundaries are usually either input or output. 

We will assume that the flow in ~ is described by a Reynolds equation, which requires 
two boundary conditions on the entire free boundary y. Analysis of the Stokes equation near 
y with consideration of surface tension on the boundary between the liquid and surrounding 
medium shows that if we neglect inertial terms and mass forces and assume the flow to be 
locally independent of coordinate ~, the boundary conditions will have the following struc- 
ture: 

2~ [ o (u2--ul, n ) h I h~]. (1.1) 
P = T  p+ ~ ( u , ~ '  (u,n) ' h '  h ' 

(qi -- qo, n) -= 0 1 .2 )  

on T+, 

on y+ at (ul, n) < 0, 

2,~ [ z (u~,n) h ] T . 

P = T ; ~  ~(~ ,n) '  ("1,")' ~ ' 

(q~, n) = h (.~, . )  g t* (--~, ~)' ("1, n)' ~ 

1.3)  

1.4) 
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